
Brouillon d’article pour les Cahiers GUTenberg n̊ ?? — January 3, 2004 1

x
◦
ındy — A Flexible Indexing System

Roger Kehr

Institut für Theoretische Informatik
Darmstadt University of Technology
Wilhelminenstraße 7
D-64283 Darmstadt, Germany
kehr@iti.informatik.tu-darmstadt.de

Abstract.

Whilst MakeIndex is an index processor which is suitable for the production of in-
dexes in conjunction with many text formatters, its support for non-English languages
is weak and a new version called International MakeIndex has been presented, for pro-
cessing international documents. The improvements concentrate on the internation-
alization of the sorting process for keywords in an index. Though it substantially im-
proves the availability to sort new languages, there are still weaknesses in the process-
ing model largely inherited from MakeIndex. Through the experiences gained from the
International MakeIndex project we implemented a new index processor x

◦
ındy that (a)

improves the sorting of index entries at a finer granularity than International Make-
Index, (b) offers new mechanisms for processing structured location references besides
page numbers and Roman numerals, and (c) allows for complex mark-up schemes.

Keywords: index processor, MakeIndex , International MakeIndex , structured loca-

tion references, context-based mark-up

1 Existing Systems

The probably most-used index processor in the TEX community is MakeIn-
dex [1]. It is independent from the document preparation system, and must be
adapted to a particular system using a configuration file usually referred to as
the index style. MakeIndex merges and sorts index entries, sorts the location
references (such as page numbers), builds ranges (if possible and desired), and
generates the index with mark-up specified in the index style. Most of its func-
tionality is hard-wired into the application itself, which is sufficient for most
of the typical indexes. It works well in conjunction with English texts, but if
other languages have to be processed, the sorting model of MakeIndex shows
its drawbacks. Sorting index entries is based on the lexicographic order of the

2 Roger Kehr

keywords. If this does not match the intended sorting order of the index, Make-
Index cannot be used. The separation of the print key from the sort key offered
in MakeIndex is only a partial solution that leads to annoying and error-prone
specifications in the document source. This and other problems are discussed
in detail in [5].

The International MakeIndex [5, 6] system is based on MakeIndex and has
been enhanced to support user-defined rules for the specification of language-
dependent sorting rules, simplifying the treatment of non-English languages.
Based on the experiences from the International MakeIndex project, we have
designed and implemented the index processor x

◦
ındy [4, 3]. It contributes to

the following aspects of indexing which will be described throughout the rest
of this paper.

Sorting Model. x
◦
ındy refines the sorting model of International MakeIndex to

achieve even better support for complex sorting rules. With this model, the
sorting rules for many of the currently spoken languages can be expressed.

Structured Location References. It introduces a clean model of handling struc-
tured location references which were supported in MakeIndex only on an ad-hoc
basis. This allows for the specification and correct processing for a large class
of existing enumeration schemes.

Context-based Mark-Up. As a result of the new model, the structure of an
index has become more complex and a new mechanism for specifying mark-up
based on context information has been developed.

2 Sorting Index Entries or How to Sort French

The most obvious problems with MakeIndex is its lack of support for sorting
index entries of non-English languages. Its sorting mechanism is essentially
based on the ISO-Latin alphabet, which is not adequate for most languages.
The International MakeIndex system has introduced the concept of merge and
sort mappings. These mappings consist of string rewrite rules that are applied
to a keyword to obtain a new keyword that is used for merging and sorting
purposes. The mapping steps are shown in Figure 1.

- -key

merge mapping sort mapping

merge key sort key

Figure 1: Keyword mappings implemented in International MakeIndex .

x
◦
ındy — A Flexible Indexing System 3

The merge mapping is used to normalize keywords, i.e. to indicate that two
different writings for a word should be treated equally. For example, one can
define that the character sequences ‘\"a’ and ‘ä’ (the former is the TEX-notation
of the latter) are to be treated equally. After this normalization step, which
merges different index entries from the index into a compound index entry, the
index entries must be sorted. The sort mapping transfers the merge key into a
sort key that reflects the lexicographic order of the index entry. For example,
one possible rule is to map ‘\"a’ onto ‘ae’ which is sometimes useful in German
indexes. Hence, the sort rules should be written in such a way that the resulting
sort key reflects the order of the index entry correctly. This mapping scheme
has been implemented in International MakeIndex .

Though this mechanism is a major improvement over the original MakeIndex , it
still does not cover important cases which often appear in practice. As a running
example we sort the French words cote, côte, côté, and coté. The French sorting
rules [2]—as well as other language sorting rules—have the concept of sorting
phases that are applied successively to obtain a total order on a given set of
keywords. The French rules say that in the first phase the diacritical marks
should not be considered at all, and the non-diacritical counterparts should be
used instead. This means that for the words above there is no distinction in the
first sorting phase at all. In a subsequent phase letters with diacritical marks
have to follow letters without diacritical marks. Additionally, the lexicographic
order is from right to left. This exactly yields the words in the order shown
above. Other languages such as German also have the concept of sorting phases
though they usually stay with the left-to-right lexicographic order.

From an abstract point of view, the model needs to be enhanced by the concept
of multiple sorting phases and possible variations in the direction in which the
lexicographic order should be processed. Figure 2 shows the mapping scheme
that is implemented in x

◦
ındy. It supports the user-defined specification of sort

- ����:
-

PPPPq
key

merge mapping

merge key

sort mapping phases

sort key (phase 2)

sort key (phase n)

sort key (phase 1)

. . .

Figure 2: Keyword mappings implemented in x
◦
ındy.

rules for several independent sort phases. For sets of keywords that are equal
in sort phase n, the sort rules of phase n+1 are applied to obtain a new order.
This is done successively until a total order on the sort keys is derived or no
more sorting phases remain. To achieve a better overview on what happens in
a sorting phase, x

◦
ındy offers means to debug the keyword mappings in detail.

4 Roger Kehr

3 Location References or How to Sort Bible Verses

One of the initial reasons for the development of x
◦
ındy was to study the inher-

ent structure of location references in an indexing model. We define a location
reference as the entity that references a concrete location in a document. Be-
sides page numbers and Roman numerals one can think of locations such as
Bible verses like Genesis 1:31 ; Exodus 1:7 ; Leviticus 2:3. An index processor
must provide solutions to at least two different aspects of location references:
(a) the ability to sort correctly these location references, and (b) to form ranges
of location references, if possible and desired. Mathematically speaking, (a) re-
quests a total order on the location references, whereas (b) needs a successor-
relationship for location references. The total order enables one to sort the
location references unambiguously, and the successor-relationship tests for a
potential joinability of two location references to form a range.

A closer look reveals that there usually is an inherent structure that gives
information about the two relationships. For example, the location references
Genesis 1:31 ; Exodus 1:7 ; and Leviticus 2:3 consist of the name of the book,
the number of the chapter, and the number of the verse. If we need to sort
these location references, we usually sort them in the first phase according to
the book they belong to. The order of the books in the Bible is fixed and does
not follow any lexicographic convention. Inside a book, sorting is done first
according to the chapter number and then according to the verse number in a
chapter. Therefore the structural entities can be described in form of the three
alphabets:

book ∈ {Genesis, Exodus, Leviticus}
chapter ∈ set of Arabic numbers
verse ∈ set of Arabic numbers

For each of these alphabets there exists a total order and a well-known
successor-relationship. Hence, sorting index entries is a problem of lexicograph-
ically sorting the components of a location reference. A structural description in
this sense is called a location class serving as a template for concrete instances
of this class, in our case concrete Bible verse references.

To enable x
◦
ındy to process location references, a definition of the location classes

has to be specified—consisting of a sequence of alphabets and separators—
as encountered in the raw index. As location references are read, it tries to
match the location references (which are available as a plain string) against the
location classes it knows about, and in case of a match it is able to decompose

x
◦
ındy — A Flexible Indexing System 5

the structure into its components. A sample specification of this location class
in x

◦
ındy is as follows:1

(define-alphabet "bible-chapters" ("Genesis" "Exodus" "Leviticus"))

(define-location-class "bible-verses"

("bible-chapters" :sep " "

"arabic-numbers" :sep ":" "arabic-numbers"))

The argument :sep declares the following argument to be a separator. The
first description defines the alphabet bible-chapters that consists of the three
enumerated letters2 Genesis, Exodus, and Leviticus. The second definition com-
poses a location class named bible-verses based on the new alphabet, the sep-
arator characters (solely used for matching the location references), and the
built-in alphabet of Arabic numbers. This description essentially defines the
grammar of the verses occurring in the input. This description enables x

◦
ındy

to correctly sort all instances of the class bible-verses and additionally enables
it to join location references into ranges, if desired. x

◦
ındy basically allows for

the definition of new alphabets and location classes, which may be of variable
length (such as 1, 1.1, 1.1.1, . . .) as well. It offers a wide range of specifications
how to join location references to form ranges.

A new concept called location reference attributes can be used to tag location
references with additional information that declares a location reference to be
of a particular type, such as a reference to a definition of an item, another for
its occurrence, and so on. MakeIndex introduced the concept of encapsulators
for mark-up purposes. We have generalized this concept to offer more flexibility
in the sorting and merging phases, for example to indicate that a definition of
an item should subsume its occurrence on the same page, to save space on the
resulting output. We give an example of the possibilities to output a sequence of
page numbers tagged as definitions and occurrences based on different policies,
such as separation of attributes, building ranges where possible, and subsuming
occurrences of location references with a definition on the same page. Table 1
illustrates some of the possibilities that can be specified with x

◦
ındy (definitions

of items are shown in boldface).

We hope that one might get an impression of what kind of processing loca-
tion references with x

◦
ındy is possible in general and what different levels of

compression in the resulting output can be achieved.

1 x
◦
ındy uses a Lisp notation for the definition of an index style.

2 A letter is basically a sequence of characters of the underlying document alphabet.

6 Roger Kehr

separate attributes, no ranges 11 13 14 17 12 15 25
mixed attributes, no ranges 11 12 13 14 15 17 25

mixed attributes, ranges, not subsumed 11 12 13–15 15 17 25
separate attributes, ranges, subsumed 11–15 17 12 15 25

separate, ranges, subsumed and ommitted 11–15 17 25

Table 1: Output of location references using different policies.

4 Context-Based Mark-Up

In addition to the indexing features introduced, there is a need for a general
model to specify mark-up easily. The set of available mark-up tags is relatively
limited and fixed in MakeIndex . In x

◦
ındy, the final index, after all processing

steps have been performed, is internally represented as a tree. Mark-up is im-
plemented with a tree-traversal algorithm that starts at the root node and visits
each node of the tree in a depth-first manner. Every time a node is entered or
left, an event is generated. The user is now able to bind mark-up tags to each
of these events. For example, the binding

(markup-locref :class "bible-verses" :open "\\textit{" :close "}")

denotes that the location references of class bible-verses should be surrounded
by the mark-up tags ‘\textit{’ and ‘}’ defining an italicized TEX-mark-up.
If the parameter :class would have been omitted, this specification would
match all location classes, therefore acting as a default setting. If a mark-up
event is raised, the event dispatcher is responsible for finding the most specific
binding that matches this event. Events are parameterized by information from
the context in which they were raised. For example, the events for location
references contain information about the current location class, the current
attribute, and the depth it is placed in. Bindings can be defined to any subset
of the set of parameters. The tag :open is the string to be emitted if a node is
entered, whereas :close defines the corresponding binding if a node is left.

At a first glance this scheme sounds more complicated than it is in practice.
Debugging facilities exist to help users specifying mark-up bindings. The whole
mark-up phase can be traced, events are shown, and the bindings can be seen
when they are activated. Usually only a small portion of all possible events
actually need bindings. Just to give an impression, Table 2 illustrates what
results can be specified with x

◦
ındy by mark-up bindings only.

More examples and detailed descriptions, illustrating how these results can be
obtained, are described in the documentation that comes with x

◦
ındy.

x
◦
ındy — A Flexible Indexing System 7

standard tagging A.1, A.3, A.7, B.5, B.12
emphasizing the chapters A.1, A.3, A.7, B.5, B.12

additional compression of sections A 1,3,7; B 5,12
standard tagging Genesis 1:31 ; Exodus 1:7

different mark-up for verses Genesis 1(31); Exodus 1(7)
verbose mark-up Genesis chap. 1, 31 ; Exodus chap. 1, 7

Table 2: Output of location references with different mark-up.

5 Implementation, Availability and Distribution

x
◦
ındy is largely implemented in Common Lisp. We have chosen the freely avail-

able CLISP-implementation3, and have extended it with the GNU rx regular
expression library4 for the keyword mappings. It consists of about 4 500 lines
of Lisp code and 600 lines of C code. A parser for the transformation from
the TEX-specific raw index in the format used by x

◦
ındy has been implemented

using 150 lines of lex code. As a comparison, MakeIndex is written in 4 300
lines of C.

The full implementation is available under the conditions of the GNU General
Public License. Its home-page with further links is accessible at our web site
http://www.iti.informatik.tu-darmstadt.de/xindy/. Source and binary
distributions are available at CTAN in directory pub/indexing/xindy/. It is
currently available in source and binary distributions for several Unix platforms
and OS/2. Efforts to port x

◦
ındy to Windows 95/NT platforms are underway and

are likely to be finished soon. There is lots of documentation available in various
formats and more detailed examples describe how to use x

◦
ındy, especially its

treatment of sorting index entries and managing location references.

6 Conclusion

x
◦
ındy is a new index processor that improves three major aspects of indexing.

It offers new means for the specification of sorting rules for the index entries
covering languages from English (with its simple sorting model) to French (with
rather complex rules). Users will find it a valuable tool that allows them to
process indexes in their native language.

Another improvement is achieved by the concept of location references and at-
tributes that allows structured references (such as Bible verses or chapter/page

3 Available at ftp://ftp2.cons.org/pub/lisp/clisp/source/.
4 Available at ftp://prep.ai.mit.edu/pub/gnu/.

8 Roger Kehr

enumeration schemes) to be processed, sorted, and joined in various ways. This
is accompanied by a powerful context-based mark-up scheme that offers very
fine control over the process of tagging the final index, suitable for different
mark-up languages such as TEX, and instances of SGML or XML documents.

From the user interface perspective, the new module scheme allows for the
development of index styles by authors that can be reused by end-users with
minimal effort. Authors are welcome to contribute to this project by writing
modules for different languages and mark-up for different back-ends.

Acknowledgments

I would like to thank Joachim Schrod and Klaus Guntermann for their inspiring
discussions essentially in early phases of this project. Further, I would like
to thank Gabor Herr, who was as excellent adviser in many implementation
questions. Additionally, I would like to thank the participants in our discussions
on the x

◦
ındy mailing list, most notably Chris Rowley, and finally Ulrich Gräf

and Prof. Waldschmidt for giving valuable hints for the improvement of this
paper.

References

[1] P. Chen and M. A. Harrison. Index Preparation and Processing. Software–Prac-
tice and Experience, 19(9):897–915, Sept. 1988. The LaTEX text of this paper is
included in the makeindex software distribution.

[2] ISO/IEC CD 14651 - International String Ordering - Method for comparing Char-
acter Strings and Description of a Default Tailorable Ordering, May 1996.

[3] R. Kehr. A Simple Context-Based Markup Algorithm and its Efficient Imple-
mentation in Clos. Technical Report TI/12, Computer Science Department,
Technical University of Darmstadt, June 1997.

[4] R. Kehr. x
◦
ındy – Definition of an Indexing Model and its Implementation. Techni-

cal Report TI/11, Computer Science Department, Technical University of Darm-
stadt, May 1997.

[5] J. Schrod. An International Version of MakeIndex. Cahiers GUTenberg, 10(10–
11):81–90, Sept. 1991.

[6] J. Schrod and G. Herr. MakeIndex Version 3.0. Technical report, Technical
University of Darmstadt, Aug. 1991.

