
A Simple Context-Based

Markup Algorithm and its

Efficient Implementation in Clos

Roger Kehr

June 1997

Bericht TI-12/97
Institut für Theoretische Informatik
Fachbereich Informatik
Technische Hochschule Darmstadt

Abstract

This report describes a simple though powerful context-based markup algorithm and
its implementation.

Markup algorithms are often used to tag data structures with markup for repre-
sentation purposes. They often follow an event-dispatching mechanism that allows
the declaration of markup tags depending on the context in which an event occurs.

We describe the markup algorithm which is used in the x
◦
ındy index processor and

show how the multi-method dispatching facilities of Clos can be easily exploited to
obtain an efficient implementation.

1 Introduction

It is often necessary to output some data structure stored in main memory into a
data stream using some particular form of representation. Somehow this process can
be seen as the reverse work of a parser. The reasons for representing data structures
in a stream are often persistence, the need to store the data structures for later
reuse, and structured markup, making the representation further available for other
post-processing steps such as typesetting.

We are interested in the problem of tagging data to obtain a specific markup
needed for typesetting purposes. This problem is easily solvable as long as the way
how markup is assigned to data objects is fix. In this case the markup process can
be directly coded into some algorithm.

If there is a need for configurable markup, the situation is slightly more com-
plicated. For an illustration of the difference, consider a tree consisting of nodes of
different types that have to be serialised into an output stream. Usually one tra-
verses the tree and emits appropriate markup tags when moving from node to node.
This kind of markup is called environment-based markup, since the objects (in this
example the nodes of the tree) are encapsulated into an environment of markup tags.

In almost all cases the nodes of a particular type are tagged uniformly in the
same manner. This kind of markup is often used to dump a representation of a tree
into a data stream. However, there are application domains for which one wants to
make the issued markup tags depending on the node’s position within the tree.

Therefore, we can roughly divide the markup schemes into context-free and
context-based (or context-sensitive) markup. In this paper we will further concentrate
on context-based markup.

The rest of this paper is organised as follows. In section 2 we first discuss existing
systems that already contributed solutions to this kind of problem. In section 3
we describe the application domain for which we needed a simpler solution to the
problem. Finally we present our traversing algorithm and its efficient implementation
in Clos [1, 3, 7].

2 Related Work

The problem of context-based markup has several interesting general solutions. We
briefly present the solutions of two different systems: CoST [2] and Stil [6]. Both
systems are intended as back-ends for SGML parsers. SGML documents must con-
form to a structure that is described in a BNF-like grammar, called the document
type definition (DTD). A document conforming to some DTD can be represented as
a tree having SGML elements as its nodes. A SGML parser validates a document

1

against its DTD and produces a structural description of its contents, the so-called
ESIS (Element Structure Information Set).

Both systems read the output of a SGML-parser and construct an internal rep-
resentation of the tree. This tree is then traversed in some order (typically preorder)
and appropriate markup is output when entering or leaving a node. The context of
a node is different in both systems. In CoST all nodes along the path from the
root node to the current node form a node’s context. In Stil the whole tree forms
a node’s context.

Both systems allow to specify markup depending on the particular context in a
very powerful way. Each SGML element is represented as the instance of a particular
class (CoST uses [incr Tcl] [5], Stil uses Clos as their underlying object systems).
When a node is entered or left an event is generated. This essentially is a message
sent to the current object whose class must offer an appropriate callback method.

The user of these systems simply binds methods to these classes that output
the desired markup. Methods are written in the underlying language (Tcl in CoST,
Clos in Stil). Both languages are extended by a rich set of primitives to make the
context information available inside the method bodies.

Thus, one can implement very powerful context-based markup strategies using
a mixture of declarative specifications and functional descriptions.

3 A Configurable Context-Based Markup Scheme

3.1 The Problem

When implementing the x
◦
ındy index processor [4] we were faced with a similar though

less complicated problem. After processing the index its internal tree representation
has to be tagged with user definable markup.

The nodes of the tree are instances of internally defined classes as well as user-
defined classes. An example of such user-defined classes are the so-called location
classes that can be specified in the index style1. Location classes can be page num-
bers, section numbers, or other kinds of location references for which a class defini-
tion must be supplied in the index style. As the markup of different location classes
may be different (e.g. page numbers are encapsulated into other markup than sec-
tion numbers, or location references of the same class may need different markup
depending on certain attribute values they own), we decided to offer to the users
a context-based markup scheme to be sufficient powerful. Consider an index of a
textbook that contains references to a location class of page numbers which has

1The index style contains a description of the occuring location classes and other objects.

2

to visually distinguish between definitions of items on a page and their usage. An
example index is shown here:

search
binary, 23, 24–26
sequential, 15, 16, 31
ordered, 18, 19

Here all references to the definition of an item are typeset in boldface, whereas the
references to the usage of an item are without any specific markup. This requires
that the location references own attributes that can be used to distinguish their
intended meaning. The attribute values can be accessed at tree traversal time.

For the intended application domain the functionality of systems such as Stil
or CoST are not appropriate for two reasons: (1) the target group of users for an
indexing system are typically non-programmers which cannot be expected to write
Clos methods or Tcl code, and (2) the functionality offered by both systems is not
necessary due to the limited context of an index.

Hence, we aimed for a more efficient solution to the markup problem. As a first
restriction we decided to define only a subset of the elements along the path as a
node’s context. Furthermore we observed that in many cases there is a need for
making the attributes of an instance accessible as context information.

After these simplification steps we ended up in a very simple model. The context
information for a particular node did not exceed four different objects. The basic
traversing order was preorder and events were generated when entering and leaving
a node. For list nodes we additionally generated an event when moving from one
element in the list to its successor.

3.2 An Efficient Implementation in CLOS

The implemented markup system consists of two parts, (1) the markup algorithm
traversing the data structure and raising appropriate events, and (2) the user inter-
face, establishing the corresponding event bindings.

We continue with the description of the underlying context-based markup scheme
and the dispatching mechanism which is directly implemented using Clos method
calls. Finally we describe the user interface responsible for the dynamic establishing
of event bindings.

3

Context-Based Markup via Multi-Method Dispatch

The tagging process directly operates on the tree representation as illustrated in
figure 1. For each inner node there exists a path from the root to the current node.
Starting from the root in figure 1, such a path could look like

index
letter group = "G"

index entry = "foo"
location class = "page-numbers"

attribute group = 1
location reference attribute = "definition"

The context of an object consists of this path and all attributes the object owns. In
our system, an event is generated each time a node is entered for the first time or
left forever. The event contains a certain subset of the information present in the
current context and passes this information to the dispatching unit.

In contrast to Stil, which represents events as Clos method calls using a single-
argument dispatch, we use in x

◦
ındy the multi-method dispatch facilities of Clos to

implement the event bindings. The current context of a node is entirely passed as
the method’s arguments to the multi-method dispatcher of Clos that finds the
appropriate method. In Stil there is only one method bound to a class and the
method itself is responsible for issuing the desired markup. Hence, the user of Stil
is forced to write a Lisp-function that (a) accesses the necessary context of the
node using functions, and (b) uses the results obtained from the context queries
to output appropriate markup. This functional description of defining markup has
been replaced in x

◦
ındy by a pattern-oriented, purely declarative specification which

is less powerful though in our opinion better understandable by the end-user.
The method definitions make heavy use of the eql-specialisation feature of

method arguments. This feature specialises a method not only on a certain class,
which is usually the case in traditional object-oriented languages, but rather spe-
cialises on a single instance which can be determined at run-time2. This allows to
specialise an event-binding to only a particular subset of the context arguments.

A sample method that is called in response to an event generated when entering a
location reference owning the attribute definition, belonging to class pagenums, and
being positioned at an arbitrary depth is represented through the following method:

(defmethod do-markup-locref-open
((attr (eql #<attribute "definition">))
(locrefcls (eql #<class "pagenums">))
(depth number))

(do-markup-string "\macro{"))

2This is possible in Clos because methods can be defined at run-time after objects have been
instantiated. 4

(
K

ey
w
or

d
K

ey
w
or

d
)

(L
o
ca

ti
o
n

C
la

ss
.
.
.
L
o
ca

ti
o
n

C
la

ss
)

(I
n
d
ex

E
n
tr

y
.
.
.
In

d
ex

E
n
tr

y)

L
ay

er
)

L
ay

er
L
ay

er
(

�
�

�
�

�
�

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

H H
(L

o
ca

ti
o
n

R
ef

er
en

ce
.
.
.
L
o
ca

ti
o
n

R
ef

er
en

ce
)

h
h

h
h

h
h

h
h

h
h

h h

(
(

(
(

(
(

(
(

(
(

((

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X X

(
(

(
(

(
(

(
(

(
(

(
(

(
((

�
�

�
�

�
�

�
�

�
� �

H
H

H
H
H

�
�

� �

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h h

�
�

� �

!
!

!
!

`
`

`
`

`
`

`̀

(B
eg

in
L
o
ca

ti
o
n

R
ef

er
en

ce
E
n
d

L
o
ca

ti
o
n

R
ef

er
en

ce
)

�
�

�

P
P

P
P

P
P

�
�

�
�

�
�

�
�

X
X

X
X

X
X

X
X

XX

�
�

�
�

� �

X
X

X
X

X
X

X
X

X
X

X X

L
et

te
r

G
ro

u
p

In
d
ex

In
d
ex

E
n
tr

y
In

d
ex

E
n
tr

y)

L
et

te
r

G
ro

u
p

L
et

te
r

G
ro

u
p
)

.
.
.

.
.
.

In
d
ex

E
n
tr

y
(I

n
d
ex

E
n
tr

y

(L
et

te
r

G
ro

u
p

C
ro

ss
re

f
C
la

ss
L
o
ca

ti
o
n

R
ef

er
en

ce
C
la

ss

)

(C
ro

ss
R
ef

er
en

ce
..
.
C
ro

ss
R
ef

er
en

ce
)

(A
tt

ri
b
u
te

G
ro

u
p

A
tt

ri
b
u
te

G
ro

u
p

..
.
A
tt

ri
b
u
te

G
ro

u
p
)

(
C
ro

ss
re

f
L
ay

er
C
ro

ss
re

f
L
ay

er
(L

o
ca

ti
o
n

R
ef

er
en

ce
.
.
.
L
o
ca

ti
o
n

R
ef

er
en

ce
.
.
.
R
an

g
e)

F
ig

u
re

1:
Sk

el
et

on
tr

ee
st

ru
ct

ur
e

of
an

in
de

x

5

This method simply outputs the string “\macro{” to the markup stream. It is spe-
cialised3 on an attribute instance and a location reference class instance4. The above
method is specialised on only two of three arguments. Since the argument depth is
not specialised any further this method matches all location references of the given
class and attribute appearing at any depth.

The User Interface

The user interface is primarily responsible to establish appropriate event-bindings.
Since event bindings are implemented as Clos methods, the user interface consists
of Lisp macros expanding to appropriate method definitions. Defining methods at
run-time is a very powerful characteristic of Clos on which this approach relies
heavily.
All markup commands in index style have the following form:

(markup-index-tree-node-name
[:open markup] [:close markup] [:sep markup]5

[context-dependent options such as :attr, :group, :class, :depth, . . .])

Since all fields are optional one can assign the markup to only a subset of the context
arguments. The accessible context arguments depend on the type of the object that
is to be output. We have not made available the whole context to the user, but
instead have selected a meaningful subset for each markup command.

The context-based markup specification allows, for example, to assign a generic
markup for all location reference classes with the command

(markup-locref :open "\generic{"
:close "}")

but redefining the markup for the instances of a certain location class as follows:

(markup-locref :class "special-class"
:open "\special{"
:close "}")

The event dispatcher has to decide which of the markup schemes is the most spe-
cialised one that matches the given arguments. In the above situation the second
markup is selected for a location reference of class special-class, but for all others
the generic markup is used, as defined by the first command.

3Specialisation is done on the argument of the eql-specialiser. The notation #<...> simply
denotes an instance of some class.

4In the x
◦
ındy-implementation location classes are themselves instances of another class.

5Option :sep is applicable for list nodes only.

6

As an example of the run-time definition of methods, consider the following user
interface declaration,

(markup-locref :open "\defin{" :close "}"
:attr "definition"
:class "pagenums"
:depth 1))

which is specialised on all three arguments, roughly expands to

(progn
(defmethod do-markup-locref-open

((attr (eql #<attribute "definition">))
(locrefcls (eql #<class "pagenums">))
(depth (eql 1)))

(do-markup-string "\defin{"))

(defmethod do-markup-locref-close
((attr (eql #<attribute "definition">))
(locrefcls (eql #<class "pagenums">))
(depth (eql 1)))

(do-markup-string "}")))

Thus, we use eql-specialisation on objects for all three specifiers. Both methods
simply output the open (resp. close) tag by calling the function do-markup-string.

With this implementation the question of the metrics had to be answered that
is used to find the most-specialised method of a certain set of methods. The prob-
lem arises when considering an event with the arguments (attr=definition, locref-
cls=pagenums) that must dispatch to exactly one of the following two methods:

(defmethod do-markup-locref-open
((attr (eql #<attribute "definition">))
(locrefcls class) ...))

(defmethod do-markup-locref-close
((attr attribute)
(locrefcls (eql #<class "pagenums">)) ...))

Both methods match the given event but since exactly one method must be called
the dispatcher must somehow decide what is the most specialised method of both.
Since the method dispatcher of Clos has a built-in metric that always finds one
most-specialised method we simply use it to resolve this kind of ambiguity.6 If it is

6In Clos the first method would be selected since the first argument attribute is more special
than the second attribute. We have chosen the positions of the arguments in a way that seems to
be most useful in practice.

7

not resolved as desired, one can define another more-specialised method that resolves
this ambiguity explicitly.

Example 1: Tagging of Ranges

A common way of tagging ranges of location references in an index entry is as follows:
a range of length 1 is printed with the starting page number and the suffix ‘f.’, those
of length 2 with suffix ‘ff.’, and all others in the form ‘x–y’. Assuming we want to
achieve this for the location class pagenums we can specify the markup as follows:

(markup-range :class "pagenums" :close "f." :length 1 :ignore-end)
(markup-range :class "pagenums" :close "ff." :length 2 :ignore-end)
(markup-range :class "pagenums" :sep "--")

The first two commands specialise on two different range lengths, whereas the third
command can be seen as the otherwise-case that is invoked for all ranges which are
not of length one or two. The special switch :ignore-end causes the second location
reference to be suppressed in the resulting output.

Example 2: Tagging of Hierarchies

Sometimes references to appendices are tagged in the following way:

A-1, A-7, A-11, B-3, B-4, B-5, C-1, C-8, C-12, C-13, C-22

This kind of markup can be achieved with the following markup commands:

(markup-locref-list :class "appendices" :sep ", ")
(markup-locref-layer-list :class "appendices" :sep "-")

The first command indicates that all location references should be separated by a
comma followed by a blank character. The second line says that the different layers
the location references consist of, shall be separated by a hyphen character. The
location reference A-1 consists of the following list of layers (A 1). Our example
could also be output using a much more compact form:

A 1, 7, 11; B 3, 4, 5; C 1, 8, 12, 13, 22

To achieve this markup one needs to transform the location references into a hier-
archy. This yields the location reference A and its sub-references 1, 7, and 11. The
following markup can then be used to obtain the desired result:

(markup-locref-list :class "appendices" :depth 0 :sep "; ")
(markup-locref-list :class "appendices" :depth 1 :open " " :sep ", ")

The location references at depth zero are separated by a semicolon whereas those at
depth one are separated by a comma.

8

4 Conclusion

We have presented an efficient implementation of a simple context-based markup
algorithm in Clos. Our notion of efficiency mainly concerns the elegance and sim-
plicity of the implementation from the programmers perspective.7 Our implemen-
tation mostly benefits from three interesting properties of Clos, (a) the ability to
define methods at run-time using the macro expansion mechanism, (b) the eql-
specialisation feature that allows specialisation of methods down to single instances
of a class, and (c) the multi-method dispatching paradigm. These features allow
to implement the markup algorithm with minimal effort. The resulting code is ex-
tremely compact and easily maintainable and extensible. We think that our example
is a demonstration of the usefulness of programming concepts such as multi-methods.

5 References

The following books and papers were referenced in this report.

[1] R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS: Integrating object-oriented
and functional programming. Commun. ACM, 34(9):29–38, September 1991.

[2] K. Harbo. CoST - Copenhagen SGML Tool. This system is available at
http://www.art.com/cost/.

[3] S. E. Keene. Object–Oriented Programming in Common Lisp–A Programmers
Guide to CLOS. Addison-Wesley, 1988.

[4] R. Kehr. x
◦
ındy – Definition of an Indexing Model and its Implementation. Techni-

cal Report TI/11, Computer Science Department, Technical University of Darm-
stadt, May 1997.

[5] M. J. McLennan. The new [incr Tcl]: Objects, mega-widgets, namespaces and
more. In U. Association, editor, Proceedings of the Tcl/Tk Workshop, July 6–8,
1995, Toronto, Ontario, Canada, pages 151–160. USENIX, July 1995.

[6] J. Schrod. Stil– SGML Transformations in Lisp. This system is available at
ftp://ftp.th-darmstadt.de/pub/text/sgml/stil/.

[7] G. L. Steele Jr. Common Lisp–The Language. Digital Press and Prentice-Hall,
12 Crosby Drive, Bedford, MA 01730, USA and Englewood Cliffs, NJ 07632,
USA, second edition, 1990.

7This does not necessarily mean that the implementation results in a short run-time.

9

