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Abstract

This report describes a new indexing model and its implementation. The model is the
result of an analysis of existing indexes and an evaluation of several index processors,
mainly MakeIndex and International MakeIndex , for which we have analysed their
features and weaknesses in practical applications.

We have identified two orthogonal dimensions in an index. The vertical dimension
consisting of index entries and keywords is mostly well understood. The theoretical
part of our work mainly contributes to a formalisation of the horizontal dimension
of indexing, namely the location references and mechanisms involved in their pro-
cessing.

Based on our indexing model we have implemented the x
◦
ındy-system, an index

processor that is a nearly full implementation of our model. Additionally, it contains
a powerful declarative event-based dispatching scheme to support complex markup
strategies.

We describe our model and some of the implementation details that may be of
general interest, especially the declarative object-oriented nature of the user inter-
face.



1 Introduction

Sometimes it is desirable to index words that don’t actually appear on the page.

. . . For example, Appendix I lists page 1 under ‘beauty’, even though page 1 only

contains the word ‘beautiful’. (The author felt that it was important to index ‘beauty’

because he had already indexed ‘truth’.)

Donald E. Knuth, The TEXbook (1984)

Today, the need to index information becomes more and more important, to guide
readers in finding the desired information efficiently and effective. For large docu-
ments indexes are traditionally one form of service that helps finding the desired
information.

Compiling an index is still a tedious work. First of all the indexer has to decide
what items should appear in the index. Furthermore it has to be decided to which
locations in the document the reader should be guided first, separating important
from less important occurrences of items in a document.

Books are often not indexed by the authors themselves. For textbooks it is nec-
essary that the indexer has sufficient knowledge of the problem area to make appro-
priate indexing decisions. Unfortunately, the index is very often the most neglected
part of a book.1

Most of nowadays word processors are still weak in supporting the production of
high-quality indexes, which might be one reason for the deficiencies found in many
textbooks. Our work is an approach to give a model of what an index is and how
a good indexing system should operate. Based on this model we present x

◦
ındy, our

implementation of this indexing model.
The rest of this paper is organised as follows: section 2 describes the data flow

between a document preparation system and the indexing system and we characterise
the involved processing phases. In section 3 we analyse the structure of indexes, thus
identifying the components an index consists of and achieving detailed insight into
the processing of location references. Section 4 describes the current implementation.
We present details of the processes involved in the transformation of an index into
its final form and how the internal representation inside the model is tagged with
markup information and fed back to the document preparation system. Necessary
design decisions in the implementation of the x

◦
ındy-system are described and lessons

learned from the project are reported.

1Especially as it can be used to express feelings (as shown by the quotation of D. E. Knuth),
as well as humour (see index entry for kludges in [17]).
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2 Data Flow in the Indexing Process

Current document preparation systems can be roughly divided into two categories:
(a) markup-based batch-processing systems such as TEX/LaTEX [10, 11] or the nroff
family of document formatters [12], and (b) direct manipulation word processors
typically operating under some windowing system. One of the most widespread used
index processor in the first group is MakeIndex [2, 3]. The indexing capabilities
of the latter group are less powerful than MakeIndex and not controllable from
outside. Therefore, we have concentrated on indexing functionalities in the first
group. Figure 1 describes the typical data flow in this group of systems.

Document Preparation System

Markup
Backend

� �Tagged Index � Index Style

6

Parser

-

?

?

?

Document

Raw Index

Index Processor

Figure 1: Typical data flow in document preparation systems

The document is processed by the document preparation system that extracts the
indexing information, the so-called raw index. The raw index comes in a system
dependent format containing information about the raw index entries.

The parser reads the raw index and transforms it into a representation suit-
able for the index processor. That means, it must be adopted to the format of the
document preparation system and the index processor.

The index processor reads two different data streams: (1) the index style, de-
scribing how the index is to be processed and tagged, and (2) the raw index. Typical
processing tasks are: (a) merging and sorting the index entries according to some
alphabet, (b) accumulating all location references with the same keyword into an
index entry, (c) decomposing and classifying location references, and (d) merging
and sorting the location references optionally followed by a range-building phase.

After the index has been processed, its internal representation must be fed back
into the document preparation cycle. This is done through the markup backend that
outputs the internal format tagged with appropriate markups defined in the index
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style in a representation that can be used by the document preparation system to
typeset the index.

From an abstract point of view the indexing process can be described as a ho-
momorphism, mapping the raw index to the tagged index. Figure 2 illustrates this
view.

?

-

- Tagged IndexRaw Index

6 Representation

(Parser)
(Markup Backend)

Abstraction

Transformation (Index Processing)

Figure 2: Index processing as a homomorphism

The raw index is mapped into an internal representation through an abstraction
process. This task is effectively done with a parser. It transforms the raw index in
a representation suitable for processing the index. The indexing process is a trans-
formation yielding an abstract representation of the index. In our system the result
of the transformation is a tree structure. An appropriate output form is achieved
through the representation mapping done with the markup backend.

The MakeIndex system does not cleanly separate the three mappings of this
homomorphism. In MakeIndex the parser is part of the indexing system. It can be
configured to accept a certain range of raw index formats, but essentially the formats
are rather restricted because it was designed primarily as an index processor for the
TEX-system and its raw index format. Additionally, the markup is in parts directly
derived from the raw index. Thus, MakeIndex operates on a level that more or less
directly maps the raw index to the tagged index. We have removed the parser from
the core indexing system and defined a general raw index specification format.

In our specification format a raw index entry consists of a keyword and a raw
location reference. A keyword consists of a list of strings. A string is a word over the
underlying document alphabet. The raw location reference is a string.

Additionally, we have made the representation mapping highly controllable by
the user. This is a major improvement in the design of index processors.

In this report we mainly concentrate on a description of the transformation map-
ping and a brief description of the representation mapping. A detailed description
of the representation mapping can be found in [9].
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3 The Indexing Model

3.1 Definition of an Index

Typically, indexes are collections of ordered keywords each one followed by a list
of location references. Usually the index is part of the indexed document and the
location references represent locations within that document. At some stage in the
document preparation process the index is generated from the document information
and fed back to the document preparation system.

Figure 3 shows an example index. Despite the fact that such confusing indexes
probably do not exist in practice, we recognise the two-dimensional structure of an
index.

trees
AVL, 2.3
natural, A-1, 2.1

Fibonacci queues, see priority queues
search

binary, 11, 11a, 1.3
sequential, A-2, 1.2
ordered, 1.2.1, see also unordered search
unordered, 1.2.2

sorting
quick sort, 37–41

priority queues
Fibonacci, 3.3

Figure 3: Sample index with section numbers and page numbers

In the vertical dimension the index is structured by the keywords, since they actually
serve as the key for the reader’s search. The keywords form a hierarchy which is often
visualised by the level of indentation. This is not always the practice. For example,
the Chicago Manual of Style [4] recommends the so-called flush-and-hang style or the
run-in indented style that are visualisations of the appearance of index hierarchies.
As opposed to hierarchical indexes there is often need for so-called flat indexes.

Along the horizontal dimension we identify the list of location references. A
location reference is an object that serves as a reference to some location within the
document. We can observe different types of locations in documents such as page
numbers, section numbers, parts of the appendix, cross references, etc. Most indexes
contain only references to pages but there are many application areas in which pages
are of less concern or don’t even exist.
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3.2 Index Entries

An index entry consists of a keyword which is a list of strings and a list of location
references. Most indexes have a recursive structure since an index entry can possibly
be composed of other (sub-)index entries. Thus index entries may form a recursive
structure.

A keyword consists of a list of strings. Strings are character sequences over the
underlying alphabet that is used in the document preparation system such as ASCII
or the ISO Latin family. Strings are denoted using the quote characters “. . . ”. An
example keyword consisting of two strings might be (“search” “sequential”). We use
parenthesis to denote list-based structures. A keyword can be interpreted as the path
in the tree structure to the corresponding location references. This view raises two
basic questions: (a) how do we recognise that two keywords and therefore strings
are equal, and (b) how do we order them?

We first discuss the ordering problem. Strings are usually ordered according to
the lexicographic order of the sequence of characters. The order of characters in
the underlying document preparation system often does not correctly represent the
language specific lexicographic order, being a problem for most of the European
languages. For instance, in many Roman languages the accented letters such as á, à,
ã, â, ä, etc. are sorted like the corresponding letter without an accent. Sorting based
on the encoding of these letters in the ISO Latin-1 alphabet would frequently yield
undesired results. Another problem is that in many languages a letter is actually
composed of two or more letters of the underlying document alphabet. For example,
in Hungarian there are letters such as Cs, Ly, Ny, and Spanish has the letters Ch,
Ll. Furthermore, a keyword might contain formatter dependent markup information
that must be ignored when comparing keywords. This problem is discussed in detail
in [15] and a scheme called keyword mappings is proposed. A merge key is generated
from the initial key through the merge mapping. From the merge key the so-called
sort key is derived through the sort mapping. Keyword mappings have been incorpo-
rated into version three of MakeIndex named International MakeIndex [16] and are
implemented using string and regular expression substitutions. With these mapping
mechanism an initial string s with its lexicographic order ls can be mapped onto
a string t having a lexicographic order lt that better represents the order of the
language specific alphabet.

The problem of equality is solved with the merge mapping. Two keywords are
equal iff they are mapped onto the same merge key. The sort key is then used to
order the keywords solving the ordering problem.

The problem of letter groups has been solved in International MakeIndex , too.
Letter groups usually appear as separate groups in the tagged index, and thus must
be identified correctly. Letter groups are identified using a comparison of a prefix
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of a sort key with a list of all letter groups declared in the index style. This model
assumes that letter groups are built using a prefix of the sort key. Other models are
not supported.

Though keyword mappings can be used to describe (a) language dependent sort-
ing orders, (b) language dependent letter groups, and (c) to appropriately handle
the formatting information that might be part of the keywords itself, it is still weak
from the users perspective. Complex sorting schemes such as the French sorting rules
described in the ISO 14651 standard International String Ordering [5] are hard to
express in the current model. The International MakeIndex model is essentially a
string rewriting system implemented with string and regular expression substitu-
tions. The most important weakness with such a system is that it operates at the
character level and does not work for more abstract objects, which might simplify
the specification of sort rules. The ISO standard describes a different method for
sorting strings that is based on a table-lookup specification of sorting rules which in
some cases simplifies the specification of sorting rules.

We have incorporated the keyword mapping scheme from International Make-
Index with minor extensions into x

◦
ındy. A new scheme is under development that

unifies and extends the concepts of the International MakeIndex and the ISO stan-
dard.

3.3 Location References

The second part of an index entry is the set of location references. Mostly locations
pointed to by the index are page numbers. In many application areas this physi-
cal location of an indexed item is of less interest, since often documents are built
according to a more logical structure the index must refer to. For example, in Hy-
pertext systems there are no page numbers. We give some examples of these logical
structures:

Regular Structures

◦ Chapter-based pages of the form ([arabic]–[arabic]): 2–8, 2–12, 4–7, 4–9.
◦ Texts of Law: 1 §436, §446; 2 §546.
◦ URLs: http://www.iti.informatik.th-darmstadt.de/xindy/.

Variable Structures

◦ Manual pages of the form ([arabic]{[alpha]}): 11, 11a, 17, 17c.
This kind of irregular structures consisting of mandatory and optional parts2

sometimes occurs in manuals that have new pages inserted between old
2Denoted with curly braces {. . . }.
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ones. This preserves the overall structure by inserting, for instance, page
11a between page 11 and 12.

◦ Bible verses: Genesis 1, 31 ; Exodus 1, 7 ; Leviticus 2, 3 ; Psalm 47.

◦ Hierarchical Sections of the form ([arabic]{.[arabic].[. . . ]}): 1.1, 1.2.1, 2.1.

A structural description of location references is done with the concept of location
classes.

3.4 Location classes

The detailed analysis of the requirements on location references and their formal
definition is the most important new aspect on processing indexes. Typically, the
document preparation system represents the location references as a simple string.
Thus, the index processor needs to parse the location reference string and identify
the components of the location reference conforming to some description. Our model
is based on the idea that the location structures appearing in a document must be
explicitly defined in the index style. A so-called location class intensionally describes
all possible location references matching this class. The index processor then tries
to match each location reference against its known location classes and decomposes
its structure, if a match was found.

The description of a location class C is a list of alphabets (α0, α1, . . . , αn). Typical
alphabets we encountered are: (a) arabic numbers, (b) roman numerals, (c) letters,
(d) words over the document alphabet such as ‘Genesis’ or ‘http’. Thus, there are
alphabets that are actually sequences of elements of finite length, e.g. the letters
{‘A’, . . . , ‘Z’} or the alphabet {‘Genesis’, ‘Exodus’, ‘Leviticus’}. A sequence of finite
length can be declared by simply listing all of its elements, thus αi = {l0, l1, . . . , lk}
with lj being the letters of the alphabet. The sorting order inside an alphabet is
simply derived from the order of its letters (li < lj ⇔ i < j). An alphabet consisting
of only one letter defines a separator, i.e. a string that is used to separate several
components of a location reference. Typical examples are dashes, dots, and blanks
(‘–’, ‘.’, ‘ ’).

An example of a sequence of infinite length is the set of arabic numbers. Sequences
of infinite length must at least be enumerable to be processed by our system. They
cannot be entirely enumerated and thus must be represented as a function, map-
ping a string to an ordinal number. x

◦
ındy, has several built-in enumerable sequences

such as arabic numbers and roman numerals. If there is a need to define more such
sequences, this can be done with a user-definable function implementing the neces-
sary mapping. In the following the notion of alphabet covers both, alphabets and
enumerable sequences.
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A location reference L = s1 . . . sn matches a location class C iff ∀i.si ∈ αi. Using
alphabets to declare the structure of a location class allows to directly derive an
ordinal number for each si separately. A location reference can then be represented
by the sequence of ordinal numbers of all αi. This sequence is called the sort key of
a location reference. This enables one to define a natural sorting order on a location
class based on the lexicographic order of the sort key.
For example, bible verses can be described in the index style using the following
definition:

(define-alphabet "bible-chapters" ("Genesis" "Exodus" "Leviticus"))
(define-location-class "bible-verses"
("bible-chapters" :sep3 " " "arabic-numbers" :sep "," "arabic-numbers"))

This effectively matches all of the examples Genesis 1, 31 ; Exodus 3, 12 ; and Leviti-
cus 2, 3. The sort key of the location reference ‘Exodus 3, 12 ’ is then the sequence of
ordinal numbers (2 3 12).4 Sorting bible verses lexicographically based on sort keys
is now a trivial task. Since some of the identified location structures have optional
parts, such as the irregular structures presented above, our model allows the defini-
tion of optional suffixes as well. These location classes are named variable location
classes. The example of the manual with inserted pages is one instance of this type
of location classes.

Another problem is the potential ambiguity in the matching process. Given the
location classes ([arabic][alpha]) and ([arabic][roman]), the following location refer-
ences match both classes: 1c, 2i, 7m, since the set of the lowercase roman numerals
{c, i, l, m, v, x} and the set of the lowercase Latin letters {a, . . . , z} are not disjoint.
We argue that this situation is unlikely to occur in practice since the reader would
be confused by such location references, making this a rather pathological case.5

Location classes like index entries can have a recursive structure, too. Often
location references of the structure ([Alpha].[arabic]) are typeset as A 1,3,7; B 5,12
instead of A.1, A.3, A.7, B.5, B.12. The example shows of two location references
each one containing other (sub-)location references, whereas the latter consists of
five different location references. x

◦
ındy offers additional declarative means to define

recursive location classes.

3.5 Attributes

In practice location references are often typeset using different font-shapes, informing
the reader of the occurence of a keyword in different meanings. For instance, in

3The argument :sep declares the following argument to be a separator.
4Assuming the first element of an alphabet has ordinal number ‘1’ we obtain Exodus→2, 3→3,

and 12→12.
5We hope so, since we actually found no meaningful counter-example.
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mathematical texts one wants to optically distinguish the definition of an entity
from its usage. Systems such as MakeIndex defined the concept of encapsulators
used to encapsulate the location reference in a markup that caused the document
preparation system to typeset the location reference as needed.

In x
◦
ındy one can attach a so-called attribute to a location reference. It is a tag

that is used for index processing purposes as well as markup tasks. The markup
mechanism is described in more detail in section 4.3. We continue with a description
of the processing schemes for location references offered in our model.

3.6 Attribute Groups

The analysis of indexes has shown that location references of different location classes
usually appear separated from each other in an index entry. Actually, it would be of
dubious value to freely mix, for instance, page numbers with section numbers. The
list of location references can therefore be partitioned into subsets for each occurring
location class.

Another observation is that some indexes separate the location references of
a location class under certain circumstances based on criteria depending on the
attributes of a location reference. For example, we might want all references to a
definition of a term to appear before the references to its usage. To illustrate these
ideas we use the font-shape roman for location references with the attribute default
and the shape boldface for definitions. The difference between the two versions would
look like this:

a) 7, 10, 11, 12, 14, 15, 17

b) 10, 12, 14, 7, 11, 15, 17

Sequence a) is sorted according to the sort key of the location references. In sequence
b) all definitions appear first, thus the attributes define a sorting criteria which is
of higher priority than the sort key. We describe these properties with the so-called
attribute groups that are an abstraction of the observed phenomenon. An attribute
group is defined by a set of attributes belonging to it, such that the defined attribute
groups constitute a partition on the set of all attributes.6 The appropriate definitions
in the index style for both examples are shown here:

a) (define-attributes ( ("definition" "default") ))

b) (define-attributes ( ("definition") ("default") ))

6We have not modeled the case that an attribute appears in more than one attribute group,
though under certain circumstances it might be an useful extension.

9



The argument of the declaration define-attributes must be a list of all attribute
groups. The only element in example a) is the attribute group consisting of both
attributes. In contrast, example b) defines two attribute groups each consisting of
only one attribute. In this notation it is possible to define attributes groups as
needed. Location references are sorted for each attribute group separately based on
the position of an attribute in an attribute group.

3.7 Relations on Location References

Beyond simply sorting the location references within an attribute group there are
other tasks that must be performed. The most important one is that successive
location references should under certain circumstances be joined to form a range.
For example, the location references 11, 12, 13, 14 should be joined into the range
11–14.

Successor Relationship. To be able to join successive location references we need
an exact definition of the successor relationship among location references. We have
already introduced a total ordering on the location references using the sort key
of a location reference, but in general this is not enough to derive the successor
relationship. It may work for page numbers consisting of arabic numbers or roman
numerals, but in case of hierarchically structured location classes it is not sufficient
and may depend on the actual document as we show now.

For example, we have page numbers of the form ([arabic]{[alpha]}) matching the
location references 11, 11a, 12. The corresponding sort keys are (11), (11 1) and (12).
We can perhaps infer that (11) could be written as (11 0) and then conclude that
11a is a successor of 11, but we actually don’t know if 11a and 12 are successors. As
long as we do not know if there is another location7 between 11a and 12 we cannot
build the range 11–12, though it might be desirable in the concrete case.

What actually causes the problem is a missing bijective mapping from the sort
key to the set of natural numbers, for which a well-defined successor relationship
exists. If this mapping would exist, we could verify if 11a and 12 are mapped onto
two successive natural numbers to decide if 12 directly follows 11a. There are two
solutions to this problem: (a) the author of a document explicitly declares 12 to be
a successor of 11a, tedious but under certain circumstances acceptable, or (b) the
document preparation system generates this information automatically and adds it
to the raw index as well. We call this kind of missing information document knowledge
since it is contained in the document itself and must be made available to the index
processor for entirely solving the successor problem.

7Here we actually mean location and not location reference.
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The Principle of Superseding. Till now we have concentrated on building ranges
among location references with the same attribute. The next problem is how to solve
this problem in an attribute group consisting of a mixture of location references with
different attributes. First of all we observe that the location references 11 and 11
might indicate two different types of occurrences of a term on page eleven. But how
should this appear in the index? Sometimes it may be desirable that there exists
a natural precedence among the attributes of an attribute group. For example, we
want to drop the location reference pointing to an usage of a term on a particular
page in favour of its definition on the same page. This saves space in the resulting
index and emphasises the importance of a definition of a term over its usage. But for
other documents the author may want to let both references coexist simultaneously.

Thus the attributes of an attribute group must define a superseding relation
indicating what location references with certain attributes can be dropped in favour
of the same location references with other attributes.

Virtual Location References. Sometimes a range cannot be built from a set of loca-
tion references with the same attribute, due to missing location references necessary
to complete a sequence. For example the location references 11, 12, 14, 15 cannot
be joined to a range because 13 is missing. In case of an additional location reference
13, one could wish to build the range 11–15 and show the 13 separately resulting
in the following sequence: 13, 11–15.

This can be accomplished if the location references with the attribute definition
would be seen as default location references in the phase of range building as well. We
call these location references virtual location references, because they do not exist as
real objects but are rather a way to simplify the process of range building. A virtual
object can be seen as the child of a real object from which it is derived. Thus, virtual
location references appear if there is a relation among the attributes appearing in an
attribute group.8 In our case there exists the virtual location reference [13 ] behaving
as a normal default location reference that helps to form the range 11–15. If no
range can be built, the virtual location references disappear. Another option can be
to eliminate the original location reference (the one the virtual location reference is
a child of), if the virtual one helps building a range. There are two ways to describe
the relations among the attributes: (a) the so-called merge-to relation M between a
source attribute and a target attribute, and additionally (b) a drop-if-merged relation
D, for which D ⊆ M must hold. Table 1 gives examples of possible combinations
for some specific relations.
Examples 1–4 characterise the situation in which the attributes definition and de-
fault appear in two separate attribute groups, whereas in the examples 5–8 both

8Actually it may be a relation among attributes appearing in different attribute groups as well.
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No. Ranges Location references

none allowed
merge-to 11 13 14 15 17 25 12 15 25

drop-if-merged
1 ◦ 11 13 14 17 12 15 25
2 ◦ 11 13–15 17 12 15 25
3 ◦ ◦ 11–15 17 12 15 25
4 ◦ ◦ ◦ 11–15 17 25
5 ◦ 11 12 13 14 15 17 25
6 ◦ 11 12 13–15 15 17 25
7 ◦ ◦ 11–15 12 15 17 25
8 ◦ ◦ ◦ 11–15 17 25

Table 1: Range building in presence of virtual location references

are in the same attribute group and attribute definition also supersedes attribute
default. Without this restriction there exist even more alternatives. As we can see
the additional relations may help to compress the list of location references under
certain circumstances.

Dropping Across Hierarchies. The principle of dropping location references in favour
of a more compact representation has to be generalised to variable location classes.
Location references could be dropped across hierarchies if they are subsumed by
location references of a higher level. For example, one may wish to transform the
location references 1, 2, 2.1, 2.2, 2.2.1, 2.3, 3 of class ([arabic].{[arabic].[arabic]})
into one of the following representations:

◦ Building of ranges separately for some layers:

1–3, 2.1–2.3, 2.2.1 or 1–3, 2.1, 2.2, 2.2.1, 2.3 .

◦ Joining at higher levels is done in favour of joining at lower levels:

1–3, 2.1–2.3 or just 1–3 .

◦ Not everything is joined and the explicit enumeration of remaining location ref-
erences is varied:

1, 2, 2.1–2.3, 3

1, 2, 2.1–2.3, 2.2.1, 3

1, 2, 2.1, 2.2, 2.2.1, 2.3, 3 .
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We will not further investigate the exact semantics of these examples, since the rules
for the different variants especially in conjunction with virtual location references
are complicated. One possible formalisation can be found in [8].

3.8 Cross References

Cross references are references to redirect the readers interest to other index entries.
Often they are typeset as ‘see. . . ’ if there are no location references in this index
entry or ‘see also. . . ’ in case the reader should also look at another index entry.

Cross references were accomplished in MakeIndex using the encapsulators pre-
sented previously. We have made cross references separate objects in our indexing
model. The user may define cross reference classes in the index style. A cross refer-
ence can be attached an attribute in the raw index specification format identifying
the class of a cross reference. This class attribute can be used to assign specific
markup to cross references and allows for a much more flexible markup and group-
ing mechanism than other index processors.

As an additional feature we distinguish between checked and unchecked cross
reference classes. Members of the former group are checked, if they point to an
existing entry in the index, thus avoiding the annoying presence of cross references
pointing to non-existent index entries.

4 Implementation

Like MakeIndex and International MakeIndex , x
◦
ındy is a monolithic system. In [1] a

pipeline-based system is presented and the authors argue in favour of using Unix text
processing tools such as awk to write a tailored index processor for each application.
They emphasise the functional decomposition of each member of the pipeline and
compare it with MakeIndex . In fact, the indexes they processed with their tools are
simple compared to the model we presented. We believe that developing an index
processor with the capabilities of our indexing model will not be possible by using
pipelines. Additionally, we wanted to implement a system that is usable by many
people, not only by experienced Unix-programmers.

4.1 Why Common Lisp?

We started using C++ as the programming language of our choice. We aimed at
a prototype implementation to verify the new aspects of our indexing model in
practice. We have found C++ to be an inadequate language for productively building
such prototypes and switched to Common Lisp [17]. All necessary data structures
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are part of the core language ready for use. The powerful macro-mechanism enabled
us to implement a system without writing a dedicated parser. The Lisp-interpreter is
well suited for this purpose. This has encouraged us to write the production system
in Lisp as well.

We have chosen the freely available clisp-implementation9, and have extended
it with the GNU rx regular expression library10 for the keyword mappings.

The system was written using the literate programming system noweb [13]. It
consists of about 4 500 lines of Lisp code and 600 lines of C code. A parser for the
transformation from the TEX-specific raw index in the format used by x

◦
ındy has been

implemented using 150 lines of lex code. The printed noweb code covers about 150
pages of text. As a comparison, MakeIndex is written in 4 300 lines of C.

4.2 Design Decisions

The Raw Index. The raw index specification format understood by x
◦
ındy currently

consists of one polymorphic command that can be used to describe an index entry
consisting of the main key, an optional print key, the location reference, its associated
attribute, cross references and other options. Each front-end to x

◦
ındy must produce

the format of the raw index interface. Due to the length of the specification we do
not describe it here. The details can be found in [7].

The Index Style. As shown in figure 1 the index processor is configured with the
index style. The index style language consists of about 35 different commands, most
of them are used to specify the markup of the final index. For a detailed description
of all commands we refer to [7]. Since a complete description of an index style can be
rather complex we have adopted a module concept that enables the decomposition
of a complete index style into submodules. This allows the reuse of components
simplifying the task of writing style files. We have implemented a set of predefined
styles that can be used in an ad-hoc manner. Though compatibility with MakeIndex
was not a design goal the distribution contains tools and modules, that make x

◦
ındy

mostly behave as a plug-in for MakeIndex .
The superseding relation is implicitly implemented using the attribute groups.

We have implemented the superseding relation as the transitive hull over the succes-
sor relation of the list defining an attribute group. For example, the attribute group
(a1, a2, a3) implicitly defines the relation {(a1, a2), (a1, a3), (a2, a3)}. This is in our
opinion an useful simplification of the model covering almost all practical needs.
Building ranges is only allowed on the last hierarchy layer of a location reference.

9Available at ftp://ma2s2.mathematik.uni-karlsruhe.de/pub/lisp/clisp/.
10Available at ftp://prep.ai.mit.edu/pub/gnu/.
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For variable location classes it is not supported due to the lack of experience with
useful application domains. The merge-to and drop-if-merged relations are imple-
mented.

4.3 Tagging the Index using Context-Based Markup

The tagging process directly operates on the tree representation as illustrated in
figure 4. Boxed items are components that are directly derived from the raw index.
The other nodes are created in the processing phase and serve to structure the index.

We have chosen to support an environment-based style of defining markup. This
kind of markup is used in document preparation systems such as TEX, SGML (e.g.
its instance HTML) and many others. The markup algorithm simply traverses the
index tree and when a node is entered or left a markup event is generated. The
user specifying the markup in the index style needs to establish appropriate event
bindings that emit meaningful formatting info for the document preparation system.

Event bindings can be specialised relative to the context in which the event
was generated. This scheme is mostly inspired by the Stil-project [14]. At event
generation time the traversing algorithm is in a context that consists of the path in
the index tree it came across from the root to the current node.
The event dispatcher must decide which of the markup schemes is the most spe-
cialised one that matches the current context. This kind of multi-argument dis-
patching is directly expressible in the multi-method dispatching scheme of Clos [6].
Internally, the system generates Clos-methods at run-time when reading the index
style that specialise on the given arguments. At markup time the method dispatcher
of Clos is used to find the appropriate method.

The user interface represented by the index style is therefore itself of object-
oriented nature. The user declares objects such as alphabets and location classes,
of which location references are instances. Markup can be attached orthogonally to
these objects using multi-argument dispatching. For users not familiar with this kind
of operation we have added a feature that traces the whole markup phase so that
generated events are shown and the markup is reported that is emitted in response
to these events. For a detailed description of the markup model see [9].

4.4 Open Problems

A markup specific problem we encountered is that many flat indexes are typeset
in the following way: index, 1–10; ˜processor, 5–9, 13; ˜style, 6, 8, 13. Thus rep-
etitions of keywords are indicated with an abbreviation sign (the tilde character in
our case). Allowing markup schemes of this kind can be implemented by making
the information that a keyword is repeated available in the markup context. But
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for indexes appearing in textbooks this is only one part of the solution. Usually the
abbreviation signs are always suppressed at the beginning of a new page in the doc-
ument. This simplifies the readers search for a keyword in the index. We argue that
suppressing abbreviation signs is mainly a problem that has to be solved by the doc-
ument preparation system but further investigation of the interaction of document
preparation systems and index processors is necessary to solve this problem.

As already noted we are currently exploring new sorting mechanisms based on
an object-oriented view on letters to simplify the user-interface of our system for
complex sorting schemes.

5 Conclusion

An index consists of a two-dimensional structure represented as a tree. Figure 4 illus-
trates the structure of the components an index consists of. The vertical dimension,
the index entries and their associated keywords are quite well understood due to
the results of the International MakeIndex project [15]. The model of the keyword
mappings covers many needs. Our main contribution is a formalisation of the ob-
jects and processes that participate in the horizontal dimension, namely alphabets,
location classes, attributes, attribute groups, the superseding relation, the merge-to
relation and the drop-if-merged relation. We have identified the involved objects and
have presented appropriate processing schemes. The details of this analysis can be
found in [8].

From an abstract point of view there are several topics the vertical and hori-
zontal dimensions share. Along both dimensions we have to solve a classification
problem. In terms of location references we must decide the location class of a lo-
cation reference, and for keywords we must decide the equality of two keywords
following a normalisation step. In terms of keywords the keyword mappings are a
solution to this problem, whereas in the horizontal dimension the different relations
(superseding, merge-to and drop-if-merged) are solutions to it.

Another correspondence occurs with the sorting problem, which in both cases can
be solved using appropriate mappings. In the vertical dimension we use a mapping
from keywords, consisting of a list of words over the document alphabet, to another
list in which each element is generated using the merge and sort mappings. This
list is then sorted lexicographically. The same process appears at the horizontal
dimension, except that we use a list of ordinal numbers to represent the sort key of
a location reference. It is possible for the user to define arbitrary alphabets along
both dimensions.

Based on this model we have implemented x
◦
ındy, a system that is more flexible

than former systems. It is tailorable to a wide range of application domains, ranging
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from multi-language support to quite complex document structures such as the bible
or HTML-documents, which can now be processed with our system. Its markup
scheme based on a highly declarative multi-argument dispatching strategy has proven
to be an adequate mechanism of describing context-based markup.

The implementation, a manual and a tutorial are available via WWW under the
URL http://www.iti.informatik.th-darmstadt.de/xindy. The author is reach-
able via electronic mail under kehr@iti.informatik.th-darmstadt.de.
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